• <samp id="wcmmc"></samp><blockquote id="wcmmc"><samp id="wcmmc"></samp></blockquote>
  • 《電子技術應用》
    您所在的位置:首頁 > 其他 > 設計應用 > 基于多任務學習的無參考超分辨圖像質量評估
    基于多任務學習的無參考超分辨圖像質量評估
    信息技術與網絡安全 8期
    劉錫澤1,李志龍2,何欣澤3,范 紅1
    (1.東華大學 信息科學與技術學院,上海201620; 2.OPPO研究院,上海200030;3.上海大學 通信與信息工程學院,上海200444)
    摘要: 圖像超分辨率重建旨在從低分辨率圖像中恢復其對應的高分辨率圖像,是計算機視覺中的經典問題。為改進傳統超分辨圖像質量評價方法與人眼感知不一致的問題,提出一種基于多任務學習的超分辨圖像質量評估網絡。網絡采用多任務學習的方式,分別學習圖像的局部頻率特征與質量分數,其中局部頻率特征用來輔助網絡進行圖像質量分數的回歸,提高分數預測的準確性和泛化能力。另外,在網絡中加入協調注意力模塊,進一步增強了模型的預測能力。實驗結果表明,所提出的算法在QADS數據集上的SROCC、PLCC等指標優于目前先進的無參考超分辨圖像質量評價方法。
    中圖分類號: TP391
    文獻標識碼: A
    DOI: 10.19358/j.issn.2096-5133.2021.08.010
    引用格式: 劉錫澤,李志龍,何欣澤,等. 基于多任務學習的無參考超分辨圖像質量評估[J].信息技術與網絡安全,2021,40(8):60-64.
    No reference super resolution image quality assessment based on multi-task learning
    Liu Xize1,Li Zhilong2,He Xinze3,Fan Hong1
    (1.College of Information Science and Technology,Donghua University,Shanghai 201620,China; 2.OPPO Research Institute,Shanghai 200030,China; 3.College of Communication and Information Engineering,Shanghai University,Shanghai 200444,China)
    Abstract: Image super-resolution reconstruction is to recover the corresponding high resolution images from low resolution images, which is a classic problem in computer vision. In order to improve the inconsistency between traditional super-resolution image quality evaluation methods and visual perception, a super-resolution image quality evaluation network based on multi-task learning is proposed. The network adopts a multi-task learning method to learn the local frequency features and quality scores of the image respectively. The local frequency features are used to assist the network in the regression of the image quality scores to improve the accuracy and generalization ability of score prediction. In addition, adding coordinate attention blocks to the network to further enhance the predictive ability of the model. The experimental results show that the SROCC and PLCC of the proposed algorithm on the QADS dataset are better than the current advanced no-reference super-resolution image quality evaluation methods.
    Key words : super-resolution image quality assessment;multi-task learning;local frequency features;coordinate

    0 引言

    單幅圖像超分辨率重建(Single Image Super-Resolution Reconstruction,SISR)是圖像復原的一種,其通過信號處理或者圖像處理的方法,將低分辨率(Low-Resolution,LR)圖像轉化為高分辨率(High-Resolution,HR)圖像[1]。目前,SISR被廣泛應用在醫學影像、遙感圖像、視頻監控等領域當中。近年來,許多SISR算法相繼被提出,因此需要一種可靠的方式來衡量各種算法重建圖像的質量好壞。

    最可靠的圖像質量評估方式是主觀評分,但這種方式需要耗費大量的人力和時間,所以往往使用客觀評價指標來對超分辨(Super-Resolution,SR)圖像進行質量評估。最常用的圖像客觀評價指標是峰值信噪比(Peak Signal-to-Noise Ratio,PSNR)和結構相似度(Structural Similarity,SSIM)。但在SISR領域中,這兩個指標與人眼感知的一致性較低[2]。因此研究者們提出了一系列基于人類視覺系統(Human Visual System,HVS)的圖像質量評估算法,如信息保真度(Information Fidelity Criterion,IFC)[3]、特征相似度(Feature Similarity,FSIM)[4]等算法,在圖像質量評估數據庫中的性能超過了PSNR、SSIM等傳統算法。



    本文詳細內容請下載:http://www.lifeadjustmentscoaching.com/resource/share/2000003726


    作者信息:

    劉錫澤1,李志龍2,何欣澤3,范  紅1

    (1.東華大學 信息科學與技術學院,上海201620;

    2.OPPO研究院,上海200030;3.上海大學 通信與信息工程學院,上海200444)


    此內容為AET網站原創,未經授權禁止轉載。
    岛国AV无码免费无禁播放器